
TEMPORAL LOGIC AND PROGRAM ANALYSIS

Cyrus Liu

• Advisor, Eric Koskinen

July 17 OPLSS 2018

Abstraction

Temporal Property
Encoding

Search Proof

➢ From Temporal Logic to Program Analysis

➢ Temporal Logic

Atomic Propositions:

• Printer is busy

• He is a lawyer

Temporal

modalities

Modal Logic:

• It is raining

• It will rain tomorrow

• It might rain tomorrow

Temporal Logic

LTL, CTL

• Quantifiers over paths: A, E

• Path specific quantifiers: X, G, F, U, W

➢ Semantics of CTL

A universal CTL formula:

• it uses only universal

temporal connectives

(AX, AF, AU, AG) with

negation applied to the

level of atomic

propositions.

Safety

Something “bad” will never happen
Liveness

Something “Good” will always happen

➢ Temporal Properties

Every universal temporal logic formula can be decomposed into a conjunction of safety and liveness.

• AG ¬bad

• e.g., mutual exclusion: no two

processes are in their critical

section at once

• Safety = if false then there is a

finite counter example

• AG AF good

• e.g., every request is eventually serviced

• Liveness = if false then there is an infinite

counterexample

➢ Program Analysis

• Derive properties of a program for all possible input values, in order to characterize the set of all possible

output values or to find problems in its internal structure

0 1 2 0

(S,R, I) |

(, , ,...),t

R S S

s s s s s I

 =  

= 

:

:

:

x

y

pc

 =

0

0

1

l

 
 
 
   1

3

1

l

 
 
 
   2

3

1

l

 
 
 
  

'

:

:

:

x

y

pc

 =

0

0

2

l

 
 
−
 
   1

3

2

l

 
 
−
 
   3

3

2

l

 
 
−
 
  

x := 3;

if (y > 0)

C1

else

C2

0 :l

1 :l

2 :l

3 :l

{f | (s, s') R, f (s') f (s)}i i i

Rank Functions

M =  

0 1 2 0

' '

: var var

, , ,...s. t .

: , , (,) R

I

Infinit



    

   

→

= 

   

P

➢ Symbolic Execution

; Variable declarations

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun z () Int)

; Constraints

(assert (= x -2))

(assert (= y 0))

(assert (= z 2))

; Solve

(assert(not (= (+ (+ x y) z)

3)))

(check-sat)

➢ Encoding Temporal Property as Program Analysis

Cook B., Koskinen E., Vardi M. (2011) Temporal Property

Verification as a Program Analysis Task. CAV 2011.

Transition Systems

Temporal Logic

Rank Functions

Safety Liveness

➢ Quick Take Away

Program

Encoding Search Proof Properties Hold

➢ TEMPORAL LOGIC AND PROGRAM ANALYSIS
Cyrus Liu

• Advisor, Eric Koskinen
July 17 OPLSS 2018

Q&A
Thanks!

