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➢ From Temporal Logic to Program Analysis



➢ Temporal Logic

Atomic Propositions:

• Printer is busy

• He is a lawyer

Temporal 

modalities

Modal Logic:

• It is raining 

• It will rain tomorrow

• It might rain tomorrow

Temporal Logic

LTL, CTL

• Quantifiers over paths: A, E 

• Path specific quantifiers: X, G, F, U, W



➢ Semantics of CTL

A universal CTL formula:

• it uses only universal 

temporal connectives 

(AX, AF, AU, AG) with 

negation applied to the 

level of atomic 

propositions.



Safety 

Something “bad” will never happen
Liveness

Something “Good” will always happen

➢ Temporal Properties

Every universal temporal logic formula can be decomposed into a conjunction of safety and liveness.

• AG ¬bad 

• e.g., mutual exclusion: no two 

processes are in their critical 

section at once 

• Safety = if false then there is a 

finite counter example

• AG AF good 

• e.g., every request is eventually serviced 

• Liveness = if false then there is an infinite 

counterexample 



➢ Program Analysis

• Derive properties of a program for all possible input values, in order to characterize the set of all possible 

output values or to find problems in its internal structure 
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➢ Symbolic Execution

; Variable declarations

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun z () Int)

; Constraints

(assert (= x -2))

(assert (= y 0))

(assert (= z 2))

; Solve

(assert(not (= (+ (+ x y) z) 

3)))

(check-sat)



➢ Encoding Temporal Property as Program Analysis

Cook B., Koskinen E., Vardi M. (2011) Temporal Property 

Verification as a Program Analysis Task. CAV 2011.
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➢ Quick Take Away

Program

Encoding Search Proof Properties Hold
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