From Sets to Graphs

Binary relations

Left totality, right totality, left unique, right unique.

From Sets to Graphs

Binary relations

Left totality, right totality, left unique, right unique.

Network of items and connections between them.

- Telephone networks, computer networks;
- Transportation networks (bus/subway/train/plane);
- Social networks (friendship, family tree);
- Molecular graphs (atoms and chemical bonds);

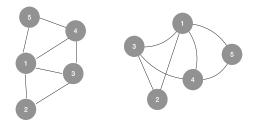
• ...

From Sets to Graphs

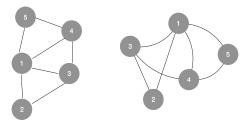
Binary relations

Left totality, right totality, left unique, right unique.

Network of items and connections between them.


- Telephone networks, computer networks;
- Transportation networks (bus/subway/train/plane);
- Social networks (friendship, family tree);
- Molecular graphs (atoms and chemical bonds);

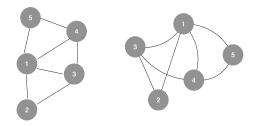
• ...


Graphs: graphical representation of our binary relation.

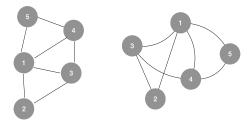
- Vertices (V);
- Edges (E);

Graph representations and degrees

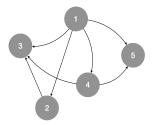
Graph representations and degrees

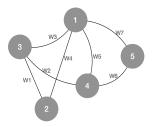

• Both graphs have:

$$V = \{1, 2, 3, 4, 5\}$$

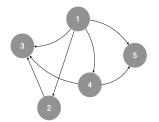

$$E = \{(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (3, 4), (4, 5)\}$$

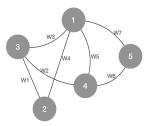
- G(V, E) represented in sets;
- G(V, E) represented in matrix;





• The degree of a vertex is the number of edges on it:


$$d(1) = 4$$
 $d(2) = 2$ $d(3) = 3$ $d(4) = 3$ $d(5) = 2$


Graph Variants

Graph Variants

- Directed graph: Instagram followers.
- Weighted graph: Amazon delivery.
- More in lab exercises.

Q & A