## Recap

| ve pro | ogram correctness using Hoare Logic                              |   |
|--------|------------------------------------------------------------------|---|
|        | $\{True\} \ \mathcal{P} \ \{z > 8\}$ where program $\mathcal{P}$ |   |
| 1      | x = 1                                                            | _ |
| 2      | y = x + 1                                                        |   |
| 3      | x = 5                                                            |   |
| 4      | z = x + 5                                                        |   |

- Sequence rule.
- Assignment rule, backwards with consequence (implicitly).
- Weakest precondition (WP) and strongest postcondition (SP).

## Conditionals

$$\frac{\{B \land P\}C_1\{Q\}, \{\neg B \land P\}C_2\{Q\}}{\{P\} if \ B \ C_1 \ else \ C_2\{Q\}}$$

- If *B* is *true*, *C*<sub>1</sub> is executed;
- If B is false (i.e.  $\neg B$ ),  $C_2$  is executed;
- Both branches should end up with the same post-conditions;

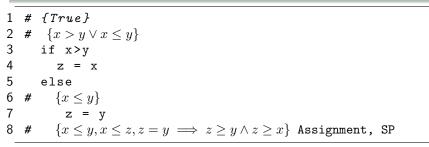
#### What is the overall precondition?

- $P_1: \{B \land P\}$ , push Q up through  $C_1$ ;
- $P_2: \{\neg B \land P\}$ , push Q through  $C_2$ ;

P is  $P_1 \wedge P_2$  .

## Conditional example

| Prove $\{T\}$ | $\{ue\} \ \mathcal{P} \ \{z \geq y \land z \geq x\}$ where program $\mathcal{P}$ |  |
|---------------|----------------------------------------------------------------------------------|--|
| 1             | if x > y                                                                         |  |
| 2             | z = x                                                                            |  |
| 3             | else                                                                             |  |
| 4             | z = y                                                                            |  |
|               |                                                                                  |  |


# $if \ {\rm branch}$

## $P_1: \{B \wedge P\}$ , push Q up through $C_1$

| 1 | # | {True}                                                         |
|---|---|----------------------------------------------------------------|
| 2 | # | $\{x > y \lor x \le y\}$                                       |
| 3 |   | if x>y                                                         |
| 4 | # | $\{x > y\}$                                                    |
| 5 |   | z = x                                                          |
| 6 | # | $\{x>y,z>y,z=x\implies z\geq y\wedge z\geq x\}$ Assignment, SP |
| 7 |   | else                                                           |
| 8 |   | z = y                                                          |
| - |   |                                                                |

## else branch

#### $P_2: \{\neg B \land P\}$ , push Q through $C_2$



# Finished result

#### Two armed conditional

## Loops

How do we prove correctness of the loop?

```
1# n is predefined
2 ...
3 result = 0
4 i = 0
5 while i <= n:
6 result = result + i
7 i = i + 1</pre>
```

### Loop invariants (I)

A property of a program loop that is true before and after each iteration.

$$\frac{\{C \land I\}body\{I\}}{\{I\} while(C) body \{\neg C \land I\}}$$

# Finding Loop Invariants

```
1# n is predefined
2 ...
3 result = 0
4 i = 0
5 while i <= n:
6 result = result + i
7 i = i + 1
```

#### General strategies for finding loop invariants (I)

- What is changing in each iteration: i, result.
- Think about a specific iteration: from iteration i(0) to iteration i+1(1), only result changed (from 0 to 0+1), result = 0 + 1... + i 1.
- What do you at the end? i = n + 1, the variable result should contain the sum of all nature number from 0 to n.

# Finding Loop Invariants

```
1# n is predefined
2 ...
3 result = 0
4 i = 0
5 while i <= n:
6 result = result + i
7 i = i + 1</pre>
```

Initialization, maintenance, termination

$$I := result = 0 + 1 + \dots + i - 1$$

# Q & A