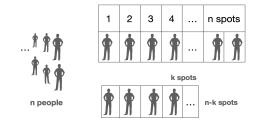

Permutation – Counting for the queue

Permutation – Counting for the queue

Queue with no size limitation

$$n! = n \times (n-1) \times (n-2) \times \dots \times 1$$

Permutation – Counting for the queue

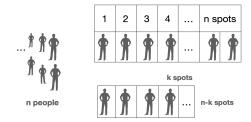

Queue with no size limitation

$$n! = n \times (n-1) \times (n-2) \times \dots \times 1$$

Queue with size of k

$${}_{n}P_{k} = n \times (n-1) \times (n-2) \times \dots \times (n-k+1)$$

Permutation - Counting for the queue


Queue with no size limitation

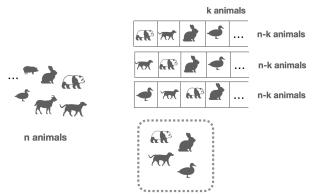
$$n! = n \times (n-1) \times (n-2) \times \ldots \times 1$$

Queue with size of k

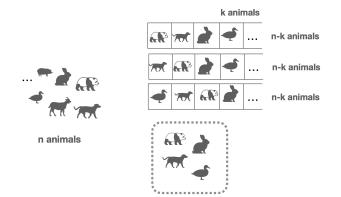
$$_{n}P_{k} = n \times (n-1) \times (n-2) \times \dots \times (n-k+1)$$

 $_{n}P_{k} = \frac{n!}{(n-k)!}$

Permutation - Counting for the queue


Queue with no size limitation

$$n! = n \times (n-1) \times (n-2) \times \ldots \times 1$$


Queue with size of k

$$\label{eq:prod} \begin{split} {}_nP_k = n\times(n-1)\times(n-2)\times\ldots\times(n-k+1)\\ {}_nP_k = \frac{n!}{(n-k)!} \end{split}$$

 When $k=n, \ {}_nP_k = n\times(n-1)\times(n-2)\times\ldots\times1$

Combination – Counting for the group

Combination – Counting for the group

Choose k items from a collection of n items

$$\binom{n}{k} = \frac{nP_k}{k!} = \frac{n!}{(n-k)! \times k!}$$

• Sum rule: if $S_1 \cap S_2 = \emptyset$, then $|S_1 \cup S_2| = |S_1| + |S_2|$.

- Sum rule: if $S_1 \cap S_2 = \emptyset$, then $|S_1 \cup S_2| = |S_1| + |S_2|$.
- Product rule: $|S_1 \times S_2| = |S_1| \times |S_2|$.

- Sum rule: if $S_1 \cap S_2 = \emptyset$, then $|S_1 \cup S_2| = |S_1| + |S_2|$.
- Product rule: $|S_1 \times S_2| = |S_1| \times |S_2|$.
- Inclusion-Exclusion: $|S_1 \cup S_2| = |S_1| + |S_2| |S_1 \cap S_2|$.

- Sum rule: if $S_1 \cap S_2 = \emptyset$, then $|S_1 \cup S_2| = |S_1| + |S_2|$.
- Product rule: $|S_1 \times S_2| = |S_1| \times |S_2|$.
- Inclusion-Exclusion: $|S_1 \cup S_2| = |S_1| + |S_2| |S_1 \cap S_2|$.
- Permutation: $_{n}P_{k} = \frac{n!}{(n-k)!} = n \times (n-1) \times ... \times (n-k+1)$

- Sum rule: if $S_1 \cap S_2 = \emptyset$, then $|S_1 \cup S_2| = |S_1| + |S_2|$.
- Product rule: $|S_1 \times S_2| = |S_1| \times |S_2|$.
- Inclusion-Exclusion: $|S_1 \cup S_2| = |S_1| + |S_2| |S_1 \cap S_2|$.
- Permutation: $_{n}P_{k} = \frac{n!}{(n-k)!} = n \times (n-1) \times ... \times (n-k+1)$

• Combination:
$$\binom{n}{k} = \frac{nP_k}{k!}$$

Q & A