Properties of sets

What's the meaning?

$A \subseteq A \cup B \equiv \forall x.x \in A \rightarrow x \in A \cup B$

Properties of sets

What's the meaning?

$A \subseteq A \cup B \equiv \forall x.x$	$f \in A \to x \in A \cup B$
---	------------------------------

	Set notation
Commutative	$A \cup B = B \cup A; A \cap B = B \cap A.$
Associative	$(A \cup B) \cup C = A \cup (B \cup C)$. (same with \cap)
Distributive	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
Complement	$A \cup \overline{A} = U.$
Idempotent	$A \cap A = A; A \cup A = A.$

Properties of sets

What's the meaning?

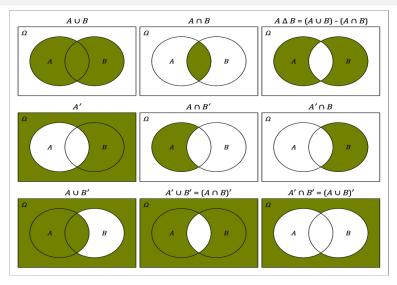
$$A \subseteq A \cup B \equiv \forall x. x \in A \to x \in A \cup B$$

Properties	Set notation
Commutative	$A \cup B = B \cup A; A \cap B = B \cap A.$
Associative	$(A \cup B) \cup C = A \cup (B \cup C)$. (same with \cap)
Distributive	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
Complement	$A \cup \overline{A} = U.$
Idempotent	$A \cap A = A; \ A \cup A = A.$

Laws

- De Morgan's Laws: $\overline{A \cup B} = \overline{A} \cap \overline{B}$; $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- Law of identity: $A \cup \emptyset = A$; $A \cap \emptyset = A$. (\emptyset is the identity of U)

Venn diagram



¹https://doi.org/10.5334/jcaa.16

Y. C. Liu (Grinnell)

1

Proof by contradiction

Proof by contradiction in proposition logic

- Assume $\neg P$.
- **2** Show $\neg P \rightarrow \bot$.
- **③** Conclude contradiction, refute $\neg P$.

Proof by contradiction

Proof by contradiction in proposition logic

- Assume $\neg P$.
- **2** Show $\neg P \rightarrow \bot$.
- **③** Conclude contradiction, refute $\neg P$.

Proof by contradiction in sets

- Assume $x \in S$.
- **2** Show $y \in U \land y \notin U$.

Claim: Right side-to-left direction of DeMorgan's Law, $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$

Proof.

Claim: Right side-to-left direction of DeMorgan's Law, $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$

Proof.

- $\ \, \textcircled{0} \ \, x \notin A \wedge x \notin B. \ \, [\mathsf{defn \ complement}]$

Claim: Right side-to-left direction of DeMorgan's Law, $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$

- Proof.
 - $\forall x.x \in \overline{A} \cap \overline{B}$. [assumption]
 - ② $x \notin A \land x \notin B$. [defn complement]
 - **③** assume $x \notin \overline{A \cup B}$. [Proof by contradiction first step]

Claim: Right side-to-left direction of DeMorgan's Law, $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$ Proof.

- $\forall x.x \in \overline{A} \cap \overline{B}$. [assumption]
- ② $x \notin A \land x \notin B$. [defn complement]
- **③** assume $x \notin \overline{A \cup B}$. [Proof by contradiction first step]
- *x* ∈ *A* ∪ *B* → *x* ∈ *A* ∨ *x* ∈ *B*. [defn complement, ∪]
 [Proof by contradiction second step]

Claim: Right side-to-left direction of DeMorgan's Law, $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$ Proof.

- $\forall x.x \in \overline{A} \cap \overline{B}$. [assumption]
- ② $x \notin A \land x \notin B$. [defn complement]
- **③** assume $x \notin \overline{A \cup B}$. [Proof by contradiction first step]
- $x \in A \cup B \rightarrow x \in A \lor x \in B$. [defn complement, \cup] [Proof by contradiction second step]
 - $x \in A$, contradicts with step 2 ($x \notin A$).

Claim: Right side-to-left direction of DeMorgan's Law, $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$ Proof.

- $\forall x.x \in \overline{A} \cap \overline{B}$. [assumption]
- ② $x \notin A \land x \notin B$. [defn complement]
- **③** assume $x \notin \overline{A \cup B}$. [Proof by contradiction first step]
- - $x \in A$, contradicts with step 2 ($x \notin A$).
 - $x \in B$, contradicts with step 2 ($x \notin B$).

Claim: Right side-to-left direction of DeMorgan's Law, $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$ Proof.

- $\forall x.x \in \overline{A} \cap \overline{B}$. [assumption]
- ② $x \notin A \land x \notin B$. [defn complement]
- **③** assume $x \notin \overline{A \cup B}$. [Proof by contradiction first step]
- - $x \in A$, contradicts with step 2 ($x \notin A$).
 - $x \in B$, contradicts with step 2 ($x \notin B$).

 $\textbf{ o } x \notin \overline{A \cup B} \text{ is false } \rightarrow x \in \overline{A \cup B} \text{ . [Proof by contradiction third step] }$

Claim: Right side-to-left direction of DeMorgan's Law, $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$ Proof.

- $\forall x.x \in \overline{A} \cap \overline{B}$. [assumption]
- ② $x \notin A \land x \notin B$. [defn complement]
- **③** assume $x \notin \overline{A \cup B}$. [Proof by contradiction first step]
- $x \in A \cup B \rightarrow x \in A \lor x \in B$. [defn complement, \cup] [Proof by contradiction second step]
 - $x \in A$, contradicts with step 2 ($x \notin A$).
 - $x \in B$, contradicts with step 2 ($x \notin B$).

 $\begin{tabular}{ll} \begin{tabular}{ll} \hline \end{tabular} & \end{tabular} \end{tabular} \begin{tabular}{ll} \begin{tabular}{ll} \end{tabular} & \end{tabular} & \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} & \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} & \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \$

• $\forall x.x \in \overline{A} \cap \overline{B} \to x \in \overline{A \cup B}$, by subset definition it equals to $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$, therefore the claim is valid.

Q & A